

Государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа с. Малая Малышевка муниципального района Кинельский Самарской области

«Рассмотрено»				
на заседании ШМО				
Протокол № 1 от 29.08.2022 г	Г			

«Проверено»		«Утверждаю»	
И.о.зам. дир. по УВР:	Н.В.Мордвинова	Директор школы	О.В. Яловая
		Пр. №105/4-ОЛ от 29	9 08 2022 г

РАБОЧАЯ ПРОГРАММА ПО ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ

Предмет: «Физика и мы»

Класс: 8

Разработчик: Щербаков И.Г.

Содержание дополнительной общеобразовательной общеразвивающей программы составляют два основных раздела:

Раздел № 1. «Комплекс основных характеристик образования: объем, содержание, планируемые результаты»:

- 1.1 Пояснительная записка
- 1.2 Цель и задачи программы
- 1.3 Содержание программы
- 1.4 Планируемые результаты

Раздел № 2. «Комплекс организационно-педагогических условий, включающий формы аттестации»:

- 2.1 Календарный учебный график
- 2.2 Условия реализации программы
- 2.3 Формы аттестации
- 2.4 Оценочные материалы
- 2.5 Методические материалы
- 2.6 Рабочие программы (модули) курсов, дисциплин программы;
- 2.7 Список литературы

Раздел № 1. «Комплекс основных характеристик образования: объем, содержание, планируемые результаты»

1.1 Пояснительная записка

Дополнительная общеобразовательная (общеразвивающая) программа «Физика и мы» (далее - Программа) имеет естественнонаучную направленность. Программа направлена на получение обучающимися знаний и умений, необходимых для формирования целостного представления о мире физических явлений, их роли в жизни человека, а также о методах исследования физических процессов.

В основу данной программы положены следующие нормативные документы, регламентирующие деятельность ОУ в сфере дополнительногообразования:

- Федеральный закон от 29.12.2012 г. №273-Ф3 «Об образовании в Российской Федерации» (редакция от 14.07.2022).
- Концепция развития дополнительного образования в РФ (утверждена распоряжением Правительства РФ от 31.03.2022 № 678-Р).
- Стратегия развития воспитания в Российской Федерации на период до 2025 года (утверждена распоряжением Правительства Российской Федерации от 29мая 2015 г. № 996-р)
- Министерства просвещение России от 9.11. 2018 г. № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам» (редакция от 30.09.2020).
- Приказ Министерства образования и науки Самарской области от 20.08. 2019 г. № 262- од «Об утверждении Порядка персонифицированного финансирования о дополнительного образования детей в Самарской области на основе сертификата персонифицированного финансирования дополнительного образования детей, обучающихся по дополнительным общеобразовательным программам ».
- Методические рекомендации по проектированию дополнительных образовательных программ, направленных письмом Минобрнауки России от 18.11.2015 №09-3242.

- «Методические рекомендации по разработке дополнительных общеобразовательных программ» (Приложения к письму министерства образования и науки Самарской области 03.09.2015№МО-16-19-01/826-ТУ).
- Распоряжение Минпросвещения России от 01.03.2019 N P-20 "Об утверждении методических рекомендаций по созданию мест, в том числе рекомендации к обновлению материально-технической базы, с целью реализации основных и дополнительных общеобразовательных программ цифрового, естественнонаучного, технического и гуманитарного профилей в общеобразовательных организациях, расположенных в сельской местности».

Актуальность, педагогическая целесообразность

Актуальность программы определена тем, что она создает у обучающихся мотивацию к обучению физики, стремление к развитию своих интеллектуальных возможностей, расширению целостного представления о проблеме данной науки за счет использования материальной и методической базы центра «Точка роста» Данная программа отличается новизной и своеобразием, так как позволяет учащимся ознакомиться с методикой организации и проведения экспериментально-исследовательской деятельности учащихся в современном учебном процессе по физике, ознакомиться со многими интересными вопросами физики на данном этапе обучения, выходящими за рамки школьной программы. Экспериментальная деятельность будет способствовать развитию мыслительных операций и общему интеллектуальному развитию.

Реализация программы внеурочной деятельности «Физика вокруг нас» предполагает индивидуальную и групповую работу обучающихся, планирование и проведение исследовательского эксперимента, самостоятельный сбор данных для решения практических задач, анализ и оценку полученных результатов. Программа предусматривает не только обучающие и развивающие цели, её реализация способствует воспитанию творческой личности с активной жизненной позицией. В рамках еженедельных занятий обучающиеся планируют эксперименты, проводят

их, обсуждают результаты, решают экспериментальные задания, задачи различных форм и типов, осуществляют проектно-исследовательскую деятельность.

1.2. Цель и задачи программы

Цель Программы - дать теоретические знания и практические навыки в области физики; стимулировать интерес к научно-исследовательской и познавательной деятельности у обучающихся.

Задачи программы:

Личностные

- формировать ответственное отношение к обучению, готовность и способность обучающихся к саморазвитию и самообразованию;
- формировать осознанное, уважительное и доброжелательное отношениек другому человеку;
- формировать коммуникативную компетентность в общении и сотрудничестве со сверстниками и взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности, работать индивидуально и в группе.

Метапредметные

- формировать умение формулировать для себя новые задачи в образовательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
- формировать навыки самостоятельного планирования путей достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
 - научить соотносить свои действия с планируемыми результатами.

Предметные

• формирование представления о явлениях и законах окружающего мира, с которыми школьники сталкиваются в повседневной жизни;

- обучить школьников навыкам пользования инструментами, материалами, оборудованием, используемым в физических исследованиях;
- формировать у обучающихся способности поэтапной постановке научного эксперимента и исследования.
 - формировать умение работы с цифровой лабораторией;
- формировать понимание роли физики как приоритетного направления в современной науке;

1.3. Содержание программы

Учебный (тематический) план

	o reombin (remain reekin) issui						
№	Название разделов, тем	Количество часов					Формы
п/п		Всего	Теория	Практика	контроля		
1.	Тепловые явления	12	6	6	Тестирование		
2.	Электрические явления	8	4	4	Анализ выполненных лабораторных работ		
3.	Электромагнитные явления	7	4	3	Тестирование		
4.	Световые явления	5	2	3	Анализ выполненных лабораторных работ		
5.	Заключительные занятия	2	1	1	Тестирование		
	Всего часов:	34	17	17			

Содержание учебного (тематического) плана

1. Тепловые явления (12 часов)

Теоретические занятия:

Внутренняя энергия. Температура. Термометры и их виды. Теплопередача: теплопроводность, конвекция, излучение. Использование энергии Солнца на Земле. Термос. Ветры. Способы передачи тепла. Количество теплоты. Агрегатные состояния вещества. Плавление и отвердевание кристаллических и аморфных тел. Испарение и конденсация. Кипение. Выветривание. Влажность воздуха. Точка росы. Физика и народные приметы. Тепловые двигатели в жизни и в быту.

Практические занятия:

Практическая работа №1 «Исследование изменения со временем температуры остывающей воды».

Практическая работа № 2 «Исследование аморфных тел».

Практическая работа № 3: «Изучение выветривания воды с течением времени».

Электрические явления (8 часов)

Теоретические занятия:

Притяжение История электричества. Электризация тел. И отталкивание электрических тел. Электроскоп. Проводники и диэлектрики. Полупроводники. Электрическая цепь и ее составные части. Закон Ома. Реостаты. Удельное сопротивление. Виды соединения проводников. Мощность электрических приборов. Бытовые электрические приборы. Нагревание проводников. Короткое замыкание. Конденсаторы. Изобретение лампы накаливания. Электрические нагревательные приборы

Практические занятия:

Практическая работа № 4 «Электризация различных тел и изучение их взаимодействия».

Практическая работа № 5 «Изготовление электроскопа»

Электромагнитные явления (7 часов)

Теоретические занятия:

Магнитное поле Земли и других планет. Магнитные линии постоянного магнита. Компас и его принцип действия. Электромагниты и их практическое применение. **Практические занятия:** Практическая работа N_{\odot} 6 «Намагничивание металлических предметов. (картон, металлические опилки).

Световые явления (5 часов)

Теоретические занятия:

Световой луч. Солнечные зайчики. Получение тени и полутени. Законы отражения и преломления света. Как Архимед поджег римский флот. Спектр. Линзы. Очки. Оптические приборы и их применение.

Практические занятия:

Практическая работа № 7 «Наблюдение отражения света».

Практическая работа № 8 Наблюдение преломления света»

Практическая работа №9 «Получение радуги»

5. Заключительные занятие. (3 часа) Подведение итогов работы за год. Поощрение учащихся, проявивших активность и усердие на занятиях.

1.4. Планируемые результаты.

Личностные:

- формирование познавательных интересов, интеллектуальных и творческих способностей обучающихся;
- формирование целостного мировоззрения, соответствующего современному уровню развития науки и технологий;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- проявление технико-технологического мышления при организации своей деятельности;
- мотивация образовательной деятельности обучающихся на основе личностно-ориентированного подхода;
- формирование ценностных отношений к себе, учителю, авторам открытий и изобретений, результатам обучения;
- формирование коммуникативной компетентности в процессе проектной, учебно-исследовательской деятельности.

Метапредметные:

- овладение составляющими исследовательской и проектной деятельности: умение видеть проблему, ставить вопросы, выдвигать гипотезы, давать определения понятиям, классифицировать, наблюдать, проводить эксперименты, делать выводы и заключения, структурировать материал, объяснять, доказывать, защищать свои идеи;
- умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в познавательной деятельности, развивать мотивы и интересы своей деятельности;
- овладение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в познавательной деятельности;

- умение создавать, применять и преобразовывать знаки и символы, модели, схемы для решения учебных и познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли, способности выслушивать педагога, понимать его точку зрения, признавать право другого человека на иное мнение;
- формирование умений представлять и отстаивать свои взгляды и убеждения, вести дискуссию;
- самостоятельная организация и выполнение различных творческих работ по созданию биологических моделей;
- виртуальное и натурное моделирование биологических объектов и биологических процессов;
- проявление инновационного подхода к решению практических задач в процессе моделирования или технологического процесса;
- формирование и развитие компетентности в области использования цифровых технологий.

Предметные:

- формировать представления о закономерной связи и познании явлений природы, об объективности научного знания; о системообразующей роли физики для развития других естественных наук, техники и технологий; о научном мировоззрении как результате изучения основ строения материи и фундаментальных законов физики;
- формировать первоначальные представления о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усваивать основные идеи механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладевать понятийным аппаратом и символическим языком физики;
- приобретать опыт применения научных методов познания, наблюдения физических явлений, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов; понимать неизбежность погрешностей любых измерений;
- понимать физические основы и принципы действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияние их на окружающую среду; осознавать возможные причины техногенных и экологических катастроф;

- осознавать необходимость применения достижений физики и технологий для рационального природопользования;
- овладевать основами безопасного использования естественных и искусственных электрических и магнитных полей, электромагнитных и звуковых волн, естественных и искусственных ионизирующих излучений во избежание их вредного воздействия на окружающую среду и организм человека;
- развивать умение планировать в повседневной жизни свои действия с применением полученных знаний законов механики, электродинамики, термодинамики и тепловых явлений с целью сбережения здоровья;
- формировать представления о нерациональном использовании природных ресурсов и энергии, о загрязнении окружающей среды как следствии несовершенства машин и механизмов.

Раздел № 2. «Комплекс организационно-педагогических условий, включающий формы аттестации»:

2.1 Календарный учебный график

No	Дата	Тема занятия	Количество часов		
			общее	теория	практика
1		Вводное занятие. Инструктаж по охране труда на уроках. Что холоднее?	1	1	0
2		Термометры и их виды. Измеряем температуру.	1	0	1
3		Практическая работа №1 «Исследование изменения со временем температуры остывающей воды».	1	0	1
4		Изоляция тепла. Шуба греет!? Зачем сковородке деревянная ручка?	1	1	0
5		Способы передачи тепла. Опыты и эксперименты.	1	0	1
6		Термос. Изготовление самодельного термоса	1	0	1
7		Откуда берется теплота? Как сохранить тепло? Холод?	1	1	0
8		Практическая работа № 2 «Исследование аморфных тел».	1	0	1
9		Урок – игра «Тепловые явления»	1	1	0
10		Практическая работа № 3: «Изучение выветривания воды с течением времени».	1	0	1
11		Физика и народные приметы.	1	1	0

12	Тепловые двигатели и экология (проект)	1	1	0
13	История электричества.	1	1	0
	Электричество на расческах. Практическая работа № 4	1	0	1
14	«Электризация различных тел и	1	0	1
	изучение их взаимодействия».			
	Практическая работа № 5	1	0	1
15	«Изготовление электроскопа»	1		1
	Устройство батарейки.	1	1	0
16		1	1	Ü
17	Изобретаем батарейку. Лимон.	1	0	1
17	Картошка. Провода. Лампочка.			
18	«Электричество в игрушках»	1	0	1
19	Занятие-игра « Электричество»	1	1	0
20	Изобретение лампы накаливания.	1	1	0
20	Электрические нагревательные			
	приборы			
21	Занимательные опыты с	1	0	1
21	магнитами.			
22	Компас. Принцип работы.	1	0	1
23	Ориентирование с помощью	1	1	0
23	компаса. Компас. План местности			
24	Магнитное поле Земли. Как	1	1	0
24	ориентируются птицы и			
	насекомые.			
25	Магнитная руда. Картина	1	1	0
	магнитного поля земли		0	1
26	Практическая работа № 6	1	0	1
	«Намагничивание			
	металлических предметов.			
27	Как изготавливают магниты.	1	1	0
21	Как Архимед поджег римский	1	1	0
28	флот	1		
	Солнечные зайчики.	1	0	1
29	Практическая работа № 7	1		1
	«Наблюдение отражения света».			
	Как сломать луч? Практическая	1	0	1
30	работа № 8 Наблюдение			
	преломления света».			
31	Радуга в природе. Как получить	1	0	1
31	радугу дома Практическая работа			
	№9 «Получение радуги»			
32	Лунные и Солнечные затмения.	1	1	0
34	Проект			

33	Заключительное занятие. «В мире явлений»	1	1	0
34 2.2 У	Заключительное занятие. «В мире явлений»	1	0	1
Всего часов:		34	17	17

2.2 Условия реализации программы

Дополнительная общеразвивающая программа «Физика и мы» рассчитана на контингент обучающихся 13-14 лет и рассчитана на один год обучения. Продолжительность обучения составляет 34 учебных часа. Предельная наполняемость учебной группы составляет 17 человек. Такое количество обучающихся является оптимальным для организации учебной и экспериментальной деятельности. Форма проведения учебных занятий — групповая. Занятия по Программе проводятся 1 раз в неделю по 1 занятию. Продолжительность одного занятия 40 минут, включая непосредственно содержательный аспект в соответствии с учебно-тематическим планированием, а также с учётом организационных и заключительных моментов занятия. Основной принцип реализации Программы — сочетание различных видов учебно-творческой деятельности путем их частой смены.

Материально-технические условия реализации Программы

- Материалы: штативы, мензурка, весы.
- Цифровая лаборатория по физике

2.2. Формы аттестации

В течение учебного года педагог проводит поэтапную диагностику успешности усвоения программного материала:

- входящий контроль (проверка знаний учащихся на начальном этапе освоения Программы);
 - текущий контроль (в течение всего срока реализации Программы);
- итоговый контроль (заключительная проверка знаний, умений, навыков по итогам реализации Программы).

Входящий контроль проводится в первые дни обучения по Программе и имеет своей целью выявить исходный уровень подготовки обучающихся, для того чтобы скорректировать учебно-тематический план.

Текущий контроль проводится с целью определения степени усвоения обучающимися учебного материала и уровня их подготовленности к занятиям.

Этот контроль должен повысить ответственность и заинтересованность обучающихся в усвоении материал. Он позволяет своевременно выявить отстающих, а также опережающих обучения с целью наиболее эффективного подбора методов и средств обучения.

Итоговый контроль проводится с целью определения степени достижения результатов обучения, закрепления знаний и умений.

Виды диагностик:

- тестирование;
- опрос детей во время занятий;
- анализ выполненной работы на каждом занятии;
- самостоятельная творческая работа;
- проведение конкурсов, презентаций внутри группы;
- зачётные работы в конце тематического раздела;
- участие в конкурсных мероприятиях различного уровня;
- итоговый проект.

2.3. Оценочные материалы

Тестовые задания (варианты для входного и промежуточного контроля)

Внутренняя энергия и способы ее изменения

- 1. Внутренняя энергия тела зависит...
- А. От скорости движения тела.
- Б. От энергии движения частиц, из которых состоит тело.
- В. От энергии взаимодействия частиц, из которых состоит тело.
- Г. От энергии движения частиц и от энергии их взаимодействия.
- 2. Первый стакан с водой охладили, получив от него 1 Дж количества теплоты, а второй стакан подняли вверх, совершив работу в 1 Дж. Изменилась ли внутренняя энергия воды в первом и втором стаканах?
- А. Ни в одном стакане не изменилась.
- Б. В 1 уменьшилась, во 2 не изменилась.
- В. В 1 не изменилась, во 2 увеличилась.
- Г. В обоих стаканах уменьшилась.
- Д. В 1 уменьшилась, во 2 увеличилась.
- 3. После того как распилили бревно, пила нагрелась. Каким способом изменили внутреннюю энергию пилы?
- А. При совершении работы. Б. При теплопередаче.
- 4. Чтобы увеличить внутреннюю энергию автомобильной шины, нужно...
- А. Выпустить из шины воздух.

- Б. Накачать в шину воздух.
- 5. Два одинаковых пакета с молоком вынули из холодильника. Один пакет оставили на столе, а второй перелили в кастрюлю и вскипятили. В каком случае внутренняя энергия молока изменилась меньше?
- А. В обоих случаях не изменилась.
- Б. В обоих случаях изменилась одинаково.
- В. В первом случае.
- Г. Во втором случае.

Тест №2 Виды теплопередачи

- 1. При погружении части металлической ложки в стакан с горячим чаем непогруженная часть ложки вскоре стала горячей. Каким способом осуществилась передача энергии в этом случае:
 - А. Теплопроводностью; Б. Излучением; В. Конвекцией;
 - Г. Всеми перечисленными выше способами.
- 2. Какой вид теплопередачи сопровождается переносом вещества?
- А. Теплопроводность. Б. Излучение. В. Конвекция.
- 3. Какое из перечисленных ниже веществ имеет наибольшую теплопроводность?
- А. Мех. Б. Дерево. В. Сталь.
- 4. Какое из перечисленных ниже веществ имеет наименьшую теплопроводность?
- А. Опилки. Б. Свинец. В. Медь.
- 5. Назовите возможный способ теплопередачи между телами, разделенными безвоздушным пространством.
- А. Теплопроводность. Б. Конвекция. В. Излучение.
- 6. Металлическая ручка и деревянная дверь будут казаться на ощупь одинаково нагретыми при температуре...
- А. выше температуры тела. Б. ниже температуры тела. В. равной температуре тела.
- 7. Что происходит с температурой тела, если оно поглощает столько же энергии, сколько излучает?
- А. Тело нагревается. Б. Тело охлаждается. В. Температура тела не меняется.
- Тест №3. Количество теплоты. Энергия топлива.

1. Что такое количество теплоты?				
А. Количество внутренней энергии, которое необходимо для нагревания вещества на 1 °C.				
Б. Часть внутренней энергии, которую тело получает или теряет при теплопередаче.				
В. Количество внутренней энергии, необходимое для нагревания вещества массой 1 кг на 1 °C.				
Г. Часть внутренней энергии, которую получает тело при совершении над ним работы				
2. Сколько килограммов дров надо сжечь, чтобы получить такое же количество теплоты, как при сжигании 2 кг каменного угля?				
А. 2,6 кг. Б. 5,4 кг. В. 8,4 кг.				
3. Удельная теплота сгорания нефти 4,4*107. Это означает, что				
А. при полном сгорании 1 кг нефти выделяется 4,4*107 Дж энергии.				
Б. при полном сгорании 4,4*107 кг нефти выделяется 1 Дж энергии.				
В. при полном сгорании 1 м3 нефти выделяется 4,4*107 Дж энергии.				
4. Под каким из предварительно нагретых шаров (их массы и температуры одинаковы) растает больше льда?				
А. Под цинковым.				
Б. Под медным.				
В. Под обоими одинаково.				
5. Какое количество теплоты потребуется для нагревания 10 кг воды на 1 °С?				
А. 4200 Дж. Б. 5000 Дж. В. 42000 Дж.				
6. Какое количество теплоты выделится при охлаждении 5 кг воды				
от 90 до 20 °C?				
А. 1470 кДж. Б. 147 кДж. В. 2000 кДж.				

7. На сколько градусов нагреется алюминиевая деталь массой 200 г, если ей сообщить 9200 Дж энергии?				
А. Ha 60 °C. Б. Ha 50 °C. В. Ha 100 °C.				
8. Воду какой массы можно нагреть от 20 до 50 °C, затратив для этого 2520 кДж энергии?				
А. 40 кг. Б. 20 кг. В. 50 кг.				
9. Какое количество теплоты выделяется при полном сгорании древесного угля массой 10 кг?				
А. 3,4*107 Дж. Б. 3,4*106 Дж. В. 3,4*108 Дж.				
Тест №4. Плавление и отвердевание				
 При плавлении твердого тела его температура А. не изменяется. Б. увеличивается. В. уменьшается. 				
 2. Удельная теплота плавления льда равна 3,4*105 Дж/кг. Это означает, что А. для плавления 1 кг льда требуется 3,4*105 Дж теплоты. Б. для плавления 3,4*105 кг льда требуется 1 Дж теплоты. В. При плавлении 1 кг льда выделяется 3,4*105 Дж теплоты. 				
3. Самая низкая температура зимой в Москве достигала -32 °C. Можно ли измерить такую температуру спиртовым и ртутным термометрами? А.Можно как спиртовым, так и ртутным термометрами. Б. Нельзя. В.Можно только спиртовым термометром. Г. Можно только ртутным термометром.				
 4. Что можно сказать о внутренней энергии расплавленного и нерасплавленного куска меди массой 1 кг при температуре 1085 °C? А. Их внутренние энергии одинаковы. Б. Внутренняя энергия у расплавленного куска меди больше. В. Внутренняя энергия у расплавленного куска меди меньше. 				
5. Какая энергия требуется для плавления 1 кг льда, взятого при температуре плавления? А. 3,4*105 Дж. Б. 0,25*105 Дж. В. 2*105 Дж.				
6. Рассчитайте количество теплоты, необходимое для плавления 2 кг свинца, имеющего температуру 227 °C. А. 5*107 Дж. Б. 0,78*105 Дж. В. 0,5*107 Дж.				

7. Какое количество теплот 4 кг меди до температуры 5		и кристаллизации и охлаждении
1 11	Б. 3200 кДж.	В. 1640 кДж.
Какому процессу соответст	вует участок гра	-
А. Охлаждение. Б.	Плавление.	В. Кристаллизация.
Испарение и конденсация	. Кипение	
_	ти подводимая э екул образовави ижения молекул. ния между моле	онергия идет на иегося пара. кулами внутри самой жидкости.
Какой отрезок графика хара А. 1-2. Б. 2-3.	нее. ен график измене актеризует проце ка соответствуют	ения температуры тела с течением времени. есс охлаждения пара? г жидкому состоянию вещества?
Тест№6. Электризация тел.	Электрическое	поле. Строение атома
1. При трении о шелк стекл А. положительно. Б. от	ю заряжается рицательно.	
2. Если тела взаимно оттали А. отрицательно. Б. разноим		значит, что они заряжены менно. Г. положительно.
3. Медный стержень, имеви электрически нейтральным А. Не изменится. Б. Уве	. Изменится ли г	-

4. Какая частица имеет наименьший отрицательный электрический заряд?

А. Электрон. Б. Нейтрон. В. Протон.

Тест№7. Электрические явления.

- 1. Упорядоченным движением каких частиц создается электрический ток в металлах?
- А. Положительных ионов Б. Отрицательных ионов В. Электронов
- Г. Положительных и отрицательных ионов и электронов
- Д. Положительных и отрицательных ионов
 - 2. Как называется единица измерения силы тока?
- А. Ватт Б. Ампер В. Вольт Г. Ом Д. Джоуль
 - 3. Как называется единица измерения электрического сопротивления?
- А. Ватт Б. Ампер В. Вольт Г. Ом Д. Джоуль
 - 4. Сила тока, проходящая через нить лампы, 0,3 А, напряжение на лампе 6 В. Каково электрическое сопротивление нити лампы?
- А. 20 Ом Б. 1,8 Ом В. 0,05 Ом Г. 2 Ом Д. 0,5 Ом
 - 5. Каково напряжение на участке электрической цепи сопротивлением 20 Ом при силе тока 200 мА?
- А. 4000 В Б. 4 В В. 10 В Г. 0,1 В Д. 100 В
 - 6. Какова мощность электрического тока в электрической плите при напряжении 200 В и силе тока 2 А?
- А. 100 Вт Б. 400 Вт В. 0,01 Вт Г. 4 кВт Д. 1 кВт
 - 7. Определите работу силы тока за 2 мин в электрической плите при напряжении 200 В и силе тока 2 А?

8. Какое количество теплоты выделяется в проводнике сопротивлением 0,02 кОм за 10 мин при силе тока в цепи 2 А?

А. 480 кДж Б. 24 кДж В. 48 кДж Г. 8 кДж Д. 800 Дж

- 9. Для измерения силы тока в лампе и напряжения на ней в электрическую цепь включают амперметр и вольтметр. Какой из этих электроизмерительных приборов должен быть включен параллельно лампе?
- 10.В комнате включены: одна люстра с тремя электрическими лампами, телевизор и электрический утюг. Как они включены относительно друг друга?

Возможные темы проектов по физике

Качество воды - качество жизни.

Какой термос лучше?

Колонизация Марса (условия жизнеобеспечения).

Конденсатор: исследование процессов зарядки и разрядки.

Конструирование теплоизолирующего устройства из подручных средств.

Кот как объект физических исследований.

Красивое, но страшное явление гроза.

Криогенные жидкости.

Кристаллы в окружающем мире. Выращивание кристаллов.

Альтернативные виды топлива.

Механика сердечного пульса.

Мир нанотехнологий.

Миражи.

Молниеотвод.

Мыльные пузыри с точки зрения физики.

Невесомость.

Необыкновенная жизнь обыкновенной капли.

Об использовании энергии ветра.

Ода вращательному движению.

Определение вольт-амперных характеристик для различных проводников.

Определение постоянной Планка.

Определение условий нахождения тела в равновесии.

Определение центра тяжести математическими средствами.

Определение центра тяжести тел.

Оптические иллюзии в жизни.

Опытная проверка способов электризации тел.

Опытное подтверждение закона Малюса.

Относительность движения.

Оценка уровня сверхвысокочастотного излучения микроволновых печей и проблемное обеспечение безопасности при их использовании.

Передача электроэнергии.

Плавание тел.

Плавление и отвердевание тел.

Плазма – четвертое состояние вещества.

Плотность и плавучесть тела.

Поверхностное натяжение воды.

Получение изображений в различных оптических системах.

Почему Луна не падает на Землю?

Почему реки не текут прямо, а изгибаются?

Прибор для измерения и регулирования солёности воды.

Применение закона сохранения энергии для человеческого организма.

Применение законов Кирхгофа к сложной электрической цепи.

Применение законов механики к исследованию физических возможностей человека.

Применение лазеров.

Применение ультразвука в медицине.

Применение целебного электричества в медицине.

Применение электролиза.

2.5. Методические материалы

В ходе обучения по Программе используются:

- учебные пособия по физике;
- научная литература;
- научно-популярная и детская научно-популярная литература;
- дидактические схемы;
- иллюстрации;
- видеофильмы;

Результаты работы по Программе оформляются в виде научно-исследовательских работ.

- 2.6. Рабочие программы (модули) курсов, дисциплин программы;
- 1. Закон Российской Федерации от 29.12.2012 года No273-ФЗ «Об образовании в РФ» (с последующими изменениями и дополнениями)
- 2. Гутник Е. М. Физика. 8 кл.: тематическое и поурочное планирование к учебнику А. В. Перышкина «Физика. 8 класс» / Е. М. Гутник, Е. В. Рыбакова. Под ред. Е. М. Гутник. М.: Дрофа, 2002. 96 с. ил.

- 3. Кабардин О. Ф., Орлов В. А. Физика. Тесты. 7-9 классы.: Учебн.-метод. пособие. М.: Дрофа, 2000. 96 с. ил.
- 4. Лукашик В. И. Физическая олимпиада в 6-7 классах средней школы: Пособие
- 5. Методическое пособие «Реализация образовательных программ естественнонаучной и технологической направленностей по физике с использованием оборудования центра «Точка роста» С.В. Лозовенко, Т.А. Трушина

2.7. Список литературы

- 1. Внеурочная деятельность школьников. Методический конструктор: пособие для учителя/ Д.В. Григорьев, П.В. Степанов. М.: Просвещение, 2011. 223 с. -. (Стандарты второго поколения).
- 2. Внеурочная деятельность. Примерный план внеурочной деятельности в основной школе: пособие для учителя/. В.П. Степанов, Д.В. Григорьев М.: Просвещение, 2014. 200 с. -. (Стандарты второго поколения).
- 3. Занимательная физика. Перельман Я.И. М.: Наука, 1972.
- 4. Занимательные опыты по физике. Горев Л.А. М.: Просвещение, 1977.
- 5. Фронтальные лабораторные занятия по физике в 7-11 классах общеобразовательных учреждений: Книга для учителя./под ред. В.А. Бурова, Г.Г. Никифорова. М.: Просвещение, 1996.
- 6. Федеральный государственный образовательный стандарт [Электронный ресурс]. Режим доступа: http://standart.edu/catalog.aspx?Catalog=227 7. Сайт Министерства образования и науки Российской Федерации//

официальный сайт. – Режим доступа: http://минобрнауки.pd/

- 8. Методическая служба. Издательство «БИНОМ. Лаборатория знаний» [Электронный ресурс]. Режим доступа: http://metodist.lbz.ru/
- 9. Развивающие электронные игры «Умники изучаем планету» [Электронный ресурс]. Режим доступа: http:// www.russobit-m.ru// 10. Авторская мастерская (http://metodist.lbz.ru).

Нормативно-правовые документы

1. Методические рекомендации по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы).

Приложение к письму Министерства образования и науки Российской Федерации № 09-3242 от 18.11.2015 г.